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SYNOPSIS ,

.,

Two procedures, for calculating the Mft Ciistributlon
along the sgan are given, in whtch better account 1s
taken of’ the “distribution Of circl~latio~ Over the area
than in the Prandtl lift~ng-line theory. The methods are
also app~icable to wings with sweepback. Calculated
results acoordlng to two methods agree excellently. USing
the second more simple method, ona needs about 3 hcurs.
for the calculation of the lift distribution of a str~l.ght
wing, and about 8 hours for ,this calcul&tion for the .,
swept-back ~YtnR. The results are com~ared with those of
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the Multhopp-~;thod and with experime~tal results. Finally,
there is &brief note on the sviept-backwing In sidesltp.

. .
.,
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I’@TTRODUCTION

In the present report two methods for d~term~niag
the lift distrib~tion along the span L“e described, by
means of which the influence of the wing pl~ form is
taken into account better than by previous lifting-llne
theory. Since the new methods are also applicable to
wings with sweepback, they represent an extension of
previous thecry, at least so far as scope of applicability
is concerned.

The method described in the tirst section is based
OQ the assumption of a lifting surface, and therefore will
be designated as the “lifting-surface method,!! or
“F-method .fl For a straight rectangulazz WinS, the amount
of calculation required is not materially greater than
for knovm methods already in use; it gives a noticeably

dca
smaller — than the older methods, and thi,sdecrease

da
of lift curve slope increases with decreasing aspect
ratio A and amounts to approxt,nately 8 percent for

JL=5* Practically, this fact will be especially important
for unsymmetrical lift distributions; for instance, one
can deduce from it anoteworwny decrease of the rolling
moment due to sideslip resulting from dihedral. In the
general case of trapezoidal wings witln and without sweep-
back, the required amount of calculation is quite consider-
able, and consequently one would only use the method in
special instances for the control of the results from the
more simple approximate method (L-method).

The methad of the second section is based on a
slightly modified model of previous lifting line theory,
and hence will be designated as the “lifting-line method’!
or the “L-mbthod,’I In sFite of the radical simplification
of the basic geometrical model compared to that of the
F-method (and,consequently, i.nspite of the marked reductiu+
of the required amount of calculation for trapezoidal and
swept-back wings), the results show an o~cellent agreement

9 with those of the ,first method.

In the third section the results obtained with the
new methods (the calculations have been subjected to
numerous checks, but have not bean carried’out twice
independently) are discussed, and compared with experiment,
In addition, a comparison is made with the Multhopp method
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of calculating swept-back wings (10).
f

The note on the
rolling momem, due to sideslip of swept-back wings .:
contained in the fourth secticn is &ctu”&lly cutside the
scope of the present report, which, except for .~hls note,
is concerned with symmetrical flow Incidence, but is made
here in ordor to quickly remove a widespread misconception

In this interim report, intended to make available
to pr:ctice ES quickly as possi’ble the results obtained:
to date. the F-method is onlv described in detail for the.
strain@.trectang’ilar ving, a~d the detailed application of
it for genere.1wings is not giv3n, especially since thes”O
mathematical iieta$ls are of less interest to the prqcttcal
aerodyncmieiat, Zhese matters together with sqme .,
supplementary material will be included in a “later”report,

... .

NOTATIOti

x, y Org,q coordinates i~-vortex plane

1
(See fig. l(a).)

3
z=-x-s~=t~ ~z

1<
< dimensionless coordinates

.J

F wing area ‘

. .

b wing sp&

t wing chord

h b2 aspect ratio‘=—
F

b
x(Y)=— local aspect ratio

t(~)

~ taper ratio (ratio of root chord to tip cliord).
t

“lTJ ‘ SW@3FbaCk arigle (me8sured at .& chord line)
1}.

a angle Of a~tac~
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@ angle of sideslip

v inctdsmt flow velocity

Ca ( )
lift coefficient A = Ca ~ @’F

c
In pitching-moment coefficient

( )
‘M= Cm~V2F;

(
rollin~-rnoment coefficient L = CL $ )

v2~ h
CL 2

a distance of the center of lift of a wing half from
tilieplane of syiim~try of the wing r6ferred to
the seinispan.

y(x,y) circulation density of the bound vortex

r(y) circulation distribution along the span

~ dfmen~i~nle~s circulation di~tributtonG(~] = -

F(Z), ~(Z) influence functions for F*umthod

L(Z) ~fluence function for L-~thod

-L= ~(y . ~} argument of influenco functions

1. THE LIFTING SURFACE METHOD

As remarked in the introduction,
only be derived here for the simplest

(F-~THoD)

this method will
case of the straight

rectangular wing. If such a wing is replaced by a plan6 ‘
system of vortices (see fig. l(a)), in the sense of
customary lifting surface theory (see for example
Blerik (2)), and if one denotes the density of circulation
of the bound vortices ,by y(g, fl)the induced velocity
of the point x,y may be c~lculated as

●

n ~ ,/~

I r 1
b/2 r- ~

~*(x,y) = J +kfW%qw ‘“,! ‘t/(2,-b/2 1
.

./’
(1) “-
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.,. .

By taking into account the two equattons ~. ..:L
,,

J’
t/2

.“. ,
?, .,

y(g, q}d~ ‘I’ (q) = circulation at a ‘wing”s’:ction‘(’2)
-t/2 ..,

, 1.,. . ..
..

.,

Y(~,?) is to be determined by the requirement that
l~A(x,~)‘shall be equal tc the prescribed normal component
Vn(x,y) of the incident flow velocity at the wing.

only”takes into account the part enclosed in frame
the canditlon is .,

lf o~e.

-?j@,y).
,.

This is the equation of the two-dimensional problem for’the “
profile section Located-,At tinestat$oti y having the nor~fial-
component distribution given on the right hand side of the
equation. If Vn(x$y) is independent of x one may.
obtain from the two-dimensional theory the solution
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in wh3.ch the second relation is obviously identical with
the Prandtl lifting line equation for the determination
of’ r(y). According to Fistolesi (11) this relation is
also valid ajjproximatelyfor normal-component distributions
which are dependent on x. E for V (y) one substitutes
the va?Lue Or the normal canponent at %he thzzee-quarter
point (Multllopp (10} has pointed out the importance of
this ideQ, which seems to have been.almost universall~
forgotten, I’ornumerous applications), the approximation
1s rigorously correct if the dependence on x is linear,
that is to say,the same as it is for a circulsr-arc .
prof’ile.

Since the term of WA(X$y) not enclosed in the frame
vanishes fOr A + cu (for, as is proved in (14) the
equation for the lifting surface goes into equation (5)
for A+@ )2 and also since it is known that the prandtl
equation is in good agreer.entwith experiment down
to A = k, this part may be regazwled as a correction term
to the Prandtl equation, and since it is a correction
term it need be ‘taken into account only approxtiately.
In order to arrive’at an equation for the determination
or r(q) which will be similar to the Prandtl equation,
one must Iii-st of all get rid of the d~p”endence on x
in the term f-nquestion, and this is done by Pistolesi~s
approximation by replacing it by its value at the three-

quarter chord ~oint {that is, x = ~), and in the second

place y(~,~) must be prescribed as a function of ~
for which the most suitable approximation is equation (6).
One may easily convince himself that the same result will
be obtaj.nedby incorporating both of these procedures in
the initial equation (1). The following equation is then
obtaina?L:

.

,.

+

.

●
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..

in

. . “

7’” “

(x-g) (y-?j v;+5

whi,ch X iS to

By introducing dimensionless quantities,

..” “

I“(TI] d~dq (8)
.,

we obtain

,.,

11

~ H’+2-
2*

-1 -1

1- A
.

. .

if’ flor abbreviation, we set

(9)
I



L. -’v-w ‘“

equation 10 becomes

(13)

(14)

where Fe++= 0.8847 ,corresponding to .X= 0.5.

SLnce F(L) is continuous everywhere, the numerical
evaluation of the last irlt~g~~l involves no ‘fundamental

.

difficulty. The llmction F(Z) may be calculated with
the help of’elliptical integrals, but practically one would
get the answer more quicklyusing numerical approximation . -
methods. F(2) is an antisymmetrical function whose
positive branch is shown in figure 2,

The solution of the integral differential. equation (14.) ‘“
will be carried out in analogy to the Mu.lthoppprocedure (9J
familiarity with which is here assumed, especially fsxlili~
with the Mul’choppnotation (the Multhopp dimensionless
circulation

I
is designated here by G). To this end, we

need a mecnan cal Lntegratiortformula, the proof of which
is analogous to that of the formula used by l.!ulthopp(9), (10).

It iS:

If’ f(fi) is a polynomial +n fi “of’degree (2L! + 1),
that is,of the ~orm

then we have without any approximateion:
.

●
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.

where

Accouding to the Multhopp substitution .

and USil’1.g ,

,.
--

one obtains for G? (V) the form.
/, ,...

.

,

(1+) “

. .

(19) -

(20)

If this expression is substituted in.the second integral
of {1.4)one gets the following approxi.ma”tion’from ““the
mechanical integration formula:

(21) ,.

,

. . ,., ,,. ,.
.,.
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in which for the sake of simplicity we have written

1120

(23)

By taking into account the Nlulthopp quadrature formula
for the first inte~$ral, one now obtains from equation (l~!.)
the following system of linear equations for the
determination of’the G~ :

For symmetrical circulation distributions these eq~~ations
are further simplified to

m+I
—-

where

-1 +--
Evn = -&- Lq.L(Fvv - ~vp),’v=x+l-~

2(M -i- 1) v-o

(27)

(28)

The ~nw which appear here are formed from the fnl~ and
are given in table I for m = 7 and 1,[= 7, 15, 31 and in
table 11 for m = 15 and M = 15.” Their calculation was
not,made with formulas (19), but, in particular for the
case m = M in a considerably simpler manner to which,
however~ no further reference will be .Yadehere.

.

,

The method of calculation of the lift dfstr~bution of “
a stra@t rectangular wing with symmetrical angle of’attack
distribution is, then, for the case m R 7 as follows :
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‘Ac.cor&lg,.to
chooses a certain

u ‘

,.

the degree of accuracy required, one ..
M. multi~li.es the differences ‘

(COS (3V - cos @J f’o~d in table III with “the aspect
ratio A, tlzerireads for tliepoints. ZVV= “A(COSElv- COS (3Y)

the values *upt of tho function “F(l) fro~ figuiie 21
then forms the difference FVW - Fv~ and with.thern using

tab~e I the product SIXM ‘~ ~nu(FvL, -
~=o ‘-- “

be done on a calculating machine without
~ multiplication with -A/2(m + 1) one

very much tro~~ble.
obtains from

them the-quantities A~vn “ar~dfro~n them the l@thopp
coefficients BUn, bvv according to formyla (27) ,andalso

the coefficier.ts.’B;*, Bvn* of”the system of”lineice
equations (26} which may be” solved by the ?Jultlloppiteraticn
procedure. In doing this it is to be noted that half of
tinecoefficients do not vanish as in the case of the
?i~ltho~p calculations. ,

~i the case 11= m for v;hichmost of the 2U~ and
co~se quently also the %jl 1are equal.but of oppos te s5.&,
one needs for m = 7 about ~ hours for the calculation
of a lift distribution. For constant. angle of’ attack over
the span, the accuracy obtained bysett~ng< 11= m is
alw-ays suffic ien~, at any rate for .O<A s 10 altliougll
the.qu~~ti~i,es gv n do not cornsout ,very accurately.
.Tiley are, howevei’> P*tly “tOO la~~ge’ and partly too small,
.so that the l~t di.strib.utiofiis hardly affected: foh
instaiice,for A = 5, a = .1,m = 7 in,the c a~culation
‘to 5 decimals there was no di.stinttion be.tweeonthe case’s
M=T,~.?=l~,andM= 31. The increase of accuracy
resuiting frcm the choice of a larger m borrospondls ,to
that of the,Kulthopp mothod.

The Pistole.si,approximation is rigorously correct for
normal-component distribution of the form Vn = O. + cl cosq

{where cp= CQS-l ~. If the third term of ‘the Fouzzieb
developr,ent ls.als6 to be considered, the value to be “ “
taken for .Vn is not the value. at the tb~ec-quarter chord
point, but the meanof the values at the center of the
profile and at the t?s&i.lingedge. . In order to intrq.duce
this approxtiation into ,tkm above calculation, one must .
r_e&ard ~ as’not yet nailed down to a definite numerical “

.
‘In order to improve the accuracy

a curve with doubled scale was used~
cf readin~ the values,
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value, ‘andhence F*(2) and F(Z) are regarded as
funetions : F“(t$~), F( t,%) of ~: with these one forms

and

2

and one obtains the

Fo$~(0)-I-FO*(l)

2

equation

The course of the calculation_is the s~,e as~cfore~at~on
(14.) if one replaces F by F and -I’.t&!@o”= 0.818~
everywhere, !lhefunction ~(z) is likewise plotted in
figure 2.

A comparison made fcr a ‘case with A = ~ shot~sthat
taking into acccnuntthe second Pistolesi approximation
as well as the fi~~st does not give mything, at least for
the degree of accuracy employed in the calculation; Ca

changes by O.~ percent. Since, however, sfter ~(z) is
once calculated, the amount of calculation in the two cases
is the same; the” systematic calculations for the straight
rectangular wing were carried out with the function !?
(~-method” ). For a number of aspect ratios kstween O and
10 the lift distributions were calculated on the one hand
by the ?randtl lifting-line equation, and on the other
hand by equation (30); three examples are given in
figure j. For large JJ a difference is perceptible only
at the wing tip where tb.einfluence of induction is
greatest; with decreasing A the difference becomes
greater, and is in evidence over more and more of the spa.m
The new distribution always lies under the old, since
induction now comes into play more strongly. In addition,
the corresponding lift coefficients were deto”imined and
compared with the old values. As L+O the ratio

1 tends toward the value 0,~~.~ ~ ~o-% But even in the

.

.

.



range of normal aspect ratios, the deviations are alwajs
noticeable as may be seen from figuve )$.*For purposes
of comparison, some points fo~ the elliptical. wing
calculated by Helmbold are also included (the distinction
between rectangle and ellipse for very small” A Which
is revealed here is caused by the difference of the basic
vortex s@tem). According to the L-method discussed in 11
we also have for t~e rectangular wing the limit 0.5 as
A-o. Fram this figure one can also take a correction
for the old fcram~las used to recalculate to a different
aspect ratios which tori-ection to be sure ordinazzily does
not amount to very much.

me new m.ethoclwill give significant differences for
antisyzmetrl.cal ~@e of attack distributions. Although
calculations ~or such cases are not available, cmtain

.co~clusi.onsmay be drawn from figure )4. For an anti-
.symmetrical lift distribution the lift of a wing-half W~ll .
behave with respect to the inducticn effect,,approxim&tely
l~ke a ~{j,ng”~~ithhalf the span; that j.~, the lif’tof a
wing-half calculated as fo.werly and ‘the corresponding
rolling.moment are to be multiplied by the ratio

claF A
read from.figure. ~ at the point ~ s Thus the ‘

C1ap
ro,llingmoment due to sideslip caused by dihedral for a
rectangular wing with aspect ratio = 5 ~iould have to be
about 15 p~i~cent 16ss ‘than p~eviously calculated, and
actualiy Moeller (8) measured a nor.ent 18 percent too
small acccrding to the then existing thcory~

Nhen the metho”d @ extended to swept-back wings, a
number of new difficulties arisess V+tiicb-brings about a
co~.??li.cation of the formulas” and with it an increase of
the.computations-l work. For this reason, the explanation
of the ~ensral procedure will not be given in this
interimreport. For this calculation the basiswouid be
the vortex system of the li~ting surface as it is shown
in the example of tigure l(b). The difficulty caused by
the induced vsloci%y becozzing inf>nite at the center of
the wing is overcome by splitting up; that is, t@a ‘
circulation dis-tributio.n,,G(~) is substituted in the.,

form G(m) = -L’=?z?(~)+ C1’q with a suitable
constant C or, expressing this in physical terms, the
singularity of the induced veloctty caused by the bound
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vortices is neutralized by the free vorticew. In this
way we also accomplish something else at the same time,
namely that the distribution ~(fi) which is whet we are
solving for~ and wh3.ch is approximated by a klulthopp
Fourier ey.pression, looks like the distribution of the
straight wing, so that it can be determined quite
accurately, even for large sweep angles, with m = ~.
(See fig. ~. ) The calculate.m was carried out for
rectangular wings, A = 5 with sweep angles q = 0°, 15°, 45°;
the result is shown in figure 6. me purpose of these
curves is to serve as a basis of comparison with the
lifting llne method which will now be described.

IIo THE LIFTING-3LINZ VETHOD (L-YETHOD}

Given a wing with a straight one-quarter chord line,
think of the usual model of the lifting line so situated
at the.w?.ng that the lifting line is situated at the one-
quarter chord line (see fig. T(a)) and then determine
(with reference to ?istolesirs approximation) the
circulation distribution, so that the vertical component
of the induced velocity .lueto this vortex system at the
thre6-quart6r chord line is equal and opposite to the
corresponding component o~.the incident flow (to my
knowledge, this model was first used by Wieghardt (I-6),
page 261/262 in a special form). One has a right to
expect :Lhat the ‘influence of the frse vortices is pretty
well.taken into account by this simplified model, since,
although they are shorter than the ones on the lifting
surface, they are of constant density and do not decrease
to zero, as on the Iiftlng surface. f~ithreference to
the bound vortices, it wI1l now be helpful that in the
case of the infinitely wide plane plate the downwash of
the liftlng surface and the downwash of the lifting line
located at the one-quarter chord position are equal to each
other at the three-quarter chord .distance.(T-nisresult
is taken from a work by Helmbold whi~h 1s not yet
published.)

At the general point (X,Y) in the plane of the
vortex sheet the lifting-line model induces the followin~
down draf’tvelocity: -

w
.

.

.

.

.
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&ad if one introduces here the dimensionless notation
b t(~)

of (9) and also writes A = — andx=— this
t(y) “2,

.- ..

Introducing the notation ,

(33)

we obtain the following equation for the deterr.ination
of G(V):

This equation. obviously has the same form as equation (14-}
or (~0) for the lifting-surface method. Consequently the
numerical treatment is according to the same scheme as
given on pages 10/11, except.%hat there Fo+ 5.sreplaced
.

by 1, F is replaced by L andiL by~=&* The

antisynrnetric function L(l) is to be taken frotifl~ure 8.

The ap;lieeti.on of the modek to swept-back wings
makes no dlf~iculty (compare fi~~ Y(b)), s~.ncethere
,areno .,singulari%iesof the i.n@ced velocity at the three-
quarter Ghdfldline. For th~ ?M’wil-draftvelocity at a
potnt {x,y) we have for Y = O -

“. t ..
,...-.

.. ,.

.. “
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/
.

~

\b 2
x-ytcncp

‘6
r(~) —.— -...—-- .—.. .——

,.--....--..-—..-.—— --,
0 ~!’<x-~ l“]@fl~)2 + (y - q)

-j-~

drj

d~ (35)

If now one again chooses the point at whtch the downwash
is computed at the three-quarter chord’distance, or @

t(~
other words, x = y tan cp+ —~ and if one introduces

dimensionless notation, and also the function

.

.

.

.

.

.



.,

one obtains the following equation for the iietermination of
G(V)

whj-ch may be solved by the same method as the earlier equations
since La(~,~) is continuous. Compared with the csse of
no sweepbaok, the computational work is more tedious because
the fu~ction Lq(Y,fi) is not a universal function of
A (~_. ~) as in the case cp = Oo; instead the values,
L@-U,@ must be calculated afresh for every L ,t,q. Xf
one writes Lo(y,fi) as a function of ~(~ - Y) one gets

a different f&ction for each point at which the clownwash
iS com~utedz ~, for Instance if’m = 7, four tiitferent
functions. In figure 6 the results of calculations by the
F-method snd by the L-method are given for a recta ular
wing of cspect ratio ~= 5 with sweep angles q = O! 15°, 45°.
“The.agreement is very good, If, on the basis of these
examples, which to be sure should perhaps be increased, one
assumes a general agreement of the two methods, one may in
the future use only the less laborious L-method. In contraa-t -
to the Multhopp method (compare section III and also
figures 11, 12) the convergence of the L-method is SISO very
good for’large sweep angles; an increase in the number of
points from m = 7 to m = 15 does not effect any essential
change, as may be seen from figure 6. For the same reason
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IIS in the case of ‘the dt~aight “r.e~b~gul’~rwing (see p. 11)
one may also calculate gu’fi”for the pointed and swept-back
wing b taking ‘M”= m points. Using m= h?= 7 one needs
about ~“ hours for the calcul,at,~on.of th6’l$ft distribution :
of the swept-back wing. ..,, .,. ,.

,... ,..
.. . .’. . .

IIIo NUMERICAL RESULTS COMPARISON WIT’ETHE MULTHOPP llETHOD
. .

AND iITiiTHE RESULTS .OFEXP.ERIJ$3NT.
.. ...

Zn figures ~ and 10 the results of the calculation for
s.rectangular wing of’L = ~. end for a trapczoi.dal,wing .
of A =~, and Z= 2 and different sweep angles are plotted.
For comparison the curves calculated by the liulthoppmethod o
(10) ‘for cp= 0° ~dq = i)b” end with K = 1 and m= 7
are included. The large difference in total lift is
particularly apparent. This may be explained as follows: .

Multhopp assumed that the factor of pro~o@ionality
between circulation and amgle of attack was indcpendont of
angle of swoepback, becsuse ex,pariment s’hewed, at least for

.,

sweep angles which were not too great, no effect of sweep
.-

on tota13iftD The present calculati.ans,..howeverjwere
primarily intendedt? C.iveas good an approximation as
possible to the rigorous theory of the lifting surface, in

“.

order that a solid foqndatton might be.obtained for the
estimation o# various sedondary effects such s’s“b~und~.ry
layer, tip vortices, etc. Theoretically, however, sweepback
must cause a decreas’eof lif$, as ono may easily donvince .
himself, and indeed ~y a~factor of cos ~ for the wing of
infinite aspect .ratio, while for finite aspect ratio as a
result of the vortex sheet the decrease i.snot quite so large.
lksed on an approximate’calculation which will not be given
in detail h~re , ,the factor turns out”to be ‘,,
. .. A”+ 2’ .%,1 .&, x J

-2 . AiI”* In table 5,th~ values
i~

+2
G

., ,.
.,,. ,.

‘ dca
car = ~ together with their percentag~” d:yia’$ians from ‘ ‘: ,

!.,. . ,. -,

Cai for q = O are given for the ,ex~ples,’v~hichwere .’ ‘
calculated,. The dev~ations are ~iven va%y,,wellby”the

expression & x ...U””.. .
2 A+2

.
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As a,second difference between the two methods, one ‘
sees from.figures 9 and 10 that according to the Multhopp
distribution the lift is displaced a little more strongly
toward the wing t: s.

8
Table VI gives the positim of the

center of lift ~ on the span according to the Kulthopp

formula (4.7), (10}. From the same table one ma~r take the
d~fference A& of the centers of lift for the swept~back
wing end the straight wing, the magnitude of which is
decisive for the question of whether the neutral point of
the swept-back wing may cm may not be calculated from the
lift distribution of the straight wing. Referred to -

avera~e:wing chord .; the error iS tanp Aa
~,””
2

a“”quanti.tywhich is likawise given in table VI. If k
maxim error of 1 p6rcent of ths average c,hcmd is
permissible, then at least theoretically one must use the
litt distribution of the swept-back wing.beyo~d$’~ 2~”” One
sees, moreover, that for cp = 4.5° the difference b6tween
the Multhopp method, and the lifting-line method is
considerably greater than the permissiblti amount. For
large sweep sngles the error tntr~duced by the integration
formula (4.7),(10) also plays a role. Ig order to form
aq 6sti.mate of its magnitude, certajn values of a were
defer~ned by plarlimetry of th6 corresponding integral
areas, and azzelikewise given in table VI. 13ere again
one gptsdeviations which are too,large for q = ~5°.

. In an attempt ~Q explain the differences between the
Multhopp rnethbd and the L-method, the convergence behavior
of the Multinopp method i~asexamined in certain numerical
cas’es. Figure 11 shows one.example (rectangle L = ~,~ = @~.
Multhopp himself points out that, o,n ac’co,untof the
divergenc~.,~fhis in’tegral foP ,% there would be no paint
in the case of K =,.1 to increase the number of points
m to more than 7. This is confirmed by calculation. The
distribution calculated for m = 15 ‘is v&y diff6rent from
the one calculate~ for m = 7. Also $~hen the correction
~~tioil K (fig. 1 (10)) iS used, there is a marked
difference at the center of the wing when m = 7 and
‘in= 15 ● (In this connection it may be said tliatall the

i equatiq,ns of the F-method and of the L-method lead to-the
form “

..
‘.
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for suitable H(~,fi) from which, using the ltulthoppmethod
of intsgrati,on,the following system of linear equations
is obtained].

bav = Uv Huv ~v - $’ bvn Hun Gn , .v =1,2, . ., m
n=l

This method is formally very simple, but converges fright-
fully slow: m = 31 is not even sufficient. If for the
swept-back wing one calculates the term due to the sweep
angle by this method, one has a method which Is very
similar to ths Multhopp met~fl:Jdfor swept-back wing~,with
K = 1, and also has the SE-UCconvergence behavior. Very
peculiarly, over the rest of the w~ng th+ difference
between the most exact cclculatfon (m = 15, K = 1) and
the roughest calculation
great. A similar result
‘;ingwiitlnA.= ~, Z ~ 2j
According to this, there
including the correction
metk~od.

(m = ~, K = l)is”not ex.cfessively
nay be seen for the trapezoidal
end q = )+500 (See fig. 12. )
does not seem-to be much point in
factor K in the.Multhopp

The question of agreement between theory end
6xperiment is difficult to answer$ because at the yresent
time there aro not many me.asur6ments of swept-back wings
available, and the accuracy of’tho ones which are avaii-
able is not always sufficient. The following is based on
the rectangular wing measurements ‘byBlenk (3)
(A=5: (p= 00, 15° S 5°0 ) ‘mdo~~~~ntj~jej~i~a!”:~~g

= -1oo, 00, IfJo, 200, @o)
measurements of the NACA (1) (L= 6; Z = 2;$J= 00, “150, 300)
on a fairly recent series of observations of tra~ez~idal
wings with ’55°< q< ~1~0,by LuetgGbrune (6) (7) and. on
an unpublished DVL ?mea,surementof a trapezoidal wing
with Cp = 00 and (p= 35°* Regar3ing the liulthopp

thesis that
~ca

TZ
is not influenced by sweepback, this

is certainly truefor the interval of small sweep an@es
up to 1~~, or more precisely it Is not detectable since..

dca
changes of by 2 percent or 3 percent which would

x
be expected from the L-method for q = l~” are hardly
perceptible experimentally, especially since the ca(a)
curve is generally not entirely straight; but this

.

.
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assertion is also made by Luetgebrune (6) for large sweep
angles on the basis of his measurements. In my opinion,
however, these measurements cannot “be used to decide .the
matter, since the dispersion (explained by inaccuraclesof
the model) of the me~sured ‘cat values about the mean
which was suqposedto be independent of ~ was ‘ ..
a~most *1o percent (see fig. 9 ~6)), so tnat tie ‘errors
here were about as great as the difference in question.
Similarly the VDT “~Leasurement (1) cannot be used, . “ “
particularly because the corrections to that cannot be
ch6cked, . Zf””oneattempts to interpolate the Blenk ,
values of ?a(~) by a straight line, one gets far q = 50°
& decrease of cat by about 6 percent cotipsred toq “= 0°,
while from table V one can take 10~7 percen~. The I?VZ
measurement (A : 5.7, Z - 1.9) shows for ~ = 3$0,a’
decrease of abmt 8 percent, while the theoretical approx-
imate f’akm.ziawould give about 14 percent. If one were
to draw a final conclusion frbrnthese two results, it.

dca
would have” to be said: is decfieased ’bysweepbxk, “

“K.
but the decrease appears to be”only-about 60 percent of
the theoretical value. (When swept-back wings are,con-
strutted .in the usual. manner ticcording to’”which the

A
profile; and in parkictilar its percentage thickness ~

is gLven h the direction ot t,hewin’d, then ca~ really
should have another.correction because the profile s~ctions
in.tine.direction of the,qffecti.ve flow incidence - that
is, perpendicular to,the one-quarter chord line - have a
different thickness than.the prescribed profile.) According
to Rlngleb (12) cat~ -when sweep angle is used changes

b~ the factor k = cos q + 0.T25 ~ (1 - cos cp) where

the first term is due to the changed thickness. Since
this influence .is already contemplated in our calculation,
Ca!’ shoald be multiplied .by the factor

,,

( “)l+ocT25;’&qol. For,a thickness of 12 percent

this means for q =“30° an increase of Car by
1.5 percent and”an increase of 3.6 percent for P = ~~oc

,

While the above discussed question of”the total lift’
is perhaps practically not so i~portant. the zn?actical. engineer is especially interested
distribution an swept-back wing:,

in th; form-of the lift
especially because of its
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Importance for”the position of the neutral point, and for
the behavior of the wing with respect to flow separation.
From the experimental side this question may only be
completely answered by pressure-distribution measurements.
To date, these have only been wade by Luetgebrun6 who
measured a trapezoidal wing with Q = 0° and with
Y = ~?J5°. The lift distributions obtained do not reveal
an~ Ilotablb influence of sweepback at all. (This fact,
h~wever, msy be due to’the circumstance that the measure-
ment was carried cut on a wing-half with end plate at
th6 center of the wing, so that the behdvi~r at the center
of the wing, precisely where the greatest effect of
sweopback is to be ,expected theoretically, might have been
falsified.)

From the balanc6 measurements only one intprgr~ted
va~.ueis to be taken, namely tha position of the neutral
point on the wing chord, or for ~ # O the spanwise
position of tho center of lift of a wing-half. In this
way the gmeral impression, based on experiments, that
the neutral point way be determined from the l.if’t
distribution of the unswept-back wing if ~< 15°, is
confirmed by theory, since a deviation of 1/2 percent
of the average wing chord would be difficult to detect
experimentally. For q = 300 Kuhle (5 ) found in the
NACA measurements a “difference of 17 percent of the average
wing chord between calculation and experiment; this
enormous difference is due to a mistake in calculations,
but the Multhopp evaluation of this r,easurement does show
a comparatively great influence of sweepback on the
position of the center of lift, which for the most part
agr6es quite well with the results of this calculation.
ddwever, one mst”bear ih mind ~~iat”fo?ithe exper”irnen~d~
determination of the center of lift (in its dependence on ),
it is not the distance of the measured neutral point from ,
the quarter-chord line (which is its theoretical position
at ~ = O) but rather its distance from the neutral point
measured at .9 = O which is of consequence. ~ne gets,

husing ~ = 3, from table VI (1) the following values for

the position & of the center of lift:

~ = 15°: a = 09022 + 0“552 = 0.465
3tanCp

v = ~oo: ~ = 0.0,22+ 0.77 ~ = o.k60
3 tan q

,

.
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:”That k,? ‘,$,he”cent& Gf lift,
is displaced some-ma% toward

ac.cord+hg,t00‘Wnis,,actually
the canter of the wing. as

the.: .SW~-epb2.ck increases . The Blpnk v~~~”s showed the
same her.av~or : no tncreaie in-..a .i.~going from .
Q =.“15Hh ,cp: ~0°, rather, a small decrease. 13?one
assumes t~L&t ,zhe e.xp-srlmentalvslue of a determined for
‘P= l~” is hl.soapproximately ccr~e,ct f’L&.9.= .oP, whi~h
may Vbe?r;’v:33.1be the case,..there ~ej especi.dly for

~ = 0°~ great differences between thsory and exportment.

Rectiangl. e”k,= 5., ,. ‘

Trape~c3fi~~’= 6, “Z= 2 I ..i@4 ! 436”, I

..

,

‘,, ,

As a matter bf fact;’ pressure-dist.ribut”~on,.measutisinents
,,

sha~ that thd &ctual lift dis”tribukion near.the w,ing tips.;
is “&?eate’r:thfi the”theoretical, ~.vhichmay be”~xp~alned
by the’influ”e~qe,of tip ‘vortlcc~.“ E.aqsen (~) ,giv.es“QO
neutral- point posttions, p~a.b~bly on accOug”tOr-the.
r“&”ther.‘n&lin&~.”iTar iatiOn ~f’ cm(ca)a It mhy~.h~wev~r,

be d.ete-rmihedhere alsb that &e i?u~th.opp”;iiethodfor”
q =..~.Oogives too great a displacement, . :

In’,Summary it may ~.besaid thak.”the “Multhopp method
gives too .lErg6 value,~“fo~ the digplecement of the neutral
point ~ end the ssm&ts prcbably also true for,the,
F-mQth~d and the L-m&tlnod, since exper~ments up to
@ = ~Oo -apparently shbw no i.nfIuen.ceof swee~back whatever

“on.the ‘center-of=liftposition. Presumably ~his behavior
,may be pxplained by qs’stimingthat.,the- bound~ry layer,
fol~owing the pressure .&adients of the:swept-back wing,
flows from the middle toward the wing tips where it is
piled up by the oppositely direct~~ flow ~bbut ~the wing
tips ● The pressnce of such flow in the boundary layer
may be clee:rly seen fr~m flaw pictures (tu.fts$an~
color@& !ratt6r h the i{kter tunnel) ~ade by H’knSen.
Another indication that the differences between theory
and exp+r iment are to be sought in boundkiy -layer
influeti.~es2s the fact that the influence oi?the I&nold ?S
numben on ..ca’(,”)sc&L(~a)~ and cam&x” is considerably ‘

gr=eate~:$qr swept=back w$ngq ~rian,f~r straight wings*
....,,. . ., ,.,.

. ... -:” -.: “,
:., . . ,., . .
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Finally, a.few remarks about
With reference to the form of the
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wings without sweepback.
lift d~stribution, the

new methods may be expected to give not better aGreement
with measured lift distributions, but rather a somewhat
poorer agreement; for while the difference between the
old and the new distributions for large aspect ratio
consists in a decrease of’the lift, especially at the win~
tips, the experimental distributions at the tips already
.give,values too large (compare the n~te on p. 22). Since
this effect clearly has the character of nonlinearity with
respect to a it will not be comprehended by any linear
theory of the lifting surface, no matter how accurate.

The difference between the theoretical and
ekperime’ntal values of c f has hitherto been explained
by saying that, even for %he wing with infinite aspect
ratio, cay could be expected to be less than the

theoretical value, This hypothesis is only c~~d:;-~nally
true, as is shown by 3 glance at figure 13.
figure the calculated values of cal according to the
~-method, and by the Prandtl llfting-line theory using
Cfam = 2Tr are plotted versus the aspect ratio A,
together with same”experimental values obtatned with very
thin wings, which agree very well with the craF curve~

According to’th~s, there is no boundary-layer effect
present for very thin profilesj c fa.w is equal to the

theo~etical value 2Tr,and the differences. obtained
hitherto are due solely to failure to take into account
the influence of l;hesurface effec%3- Naturally even here,
especially for small aspect Patios, a perfect agreement .
between experiment and lifting-surface theory ia not to
be expected on account of the tip eff~cts. In addition,
for normal wings, there is the influence of profil~
thickness, which according to the plane theory should have
as a result an increase of cfBm while exp6riinent shows
a decreases It Is tl’niseffect which may probably be
correctly attributed to the boundary layer.

In this connection a method for calculating ‘cm

similar to the F-method would appear to be desirable,
since the relation between cm and Ca can be tested
directly by experiment. Since the induced velocity on
the surfac~ tncreases from the leading edg~ toward the
rear, a displacement of the neutral point from the me-”
quarter chord line forward is to be exp,cted with decreasing
aspect ratioj and this is in harmony with experience.
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‘... ,IVs NOTE .ON.THE;SWEDT-BACK WING IN ‘YAW ‘: ,,“,:.
+ -,

.. , ,. .,,
....’. ,,. .

The formula .for”the rolling moment due to yaw is gfven
incorrectly In almost all of the pertinent literature, the
argumenk”:being: the lift:Qf a straight wing is decreased’
in yap by “cos~p from.whiqh the change for the two hslves
of a s,wept-back wing. in yaw is Cosz(q - @) for the
advancing wing half’, “and COS2(V + (3) for the lagging
half. If “A 1s the total lif’ti’and if we assume,the

center of lift of a wing half at ~: the rolling moment .

due to sideslip
,,. ‘.

,, ..4.
will be “ . .,.

- P) J,- ,Cos’q-(p+ p)– = ~ sin 2q sin 2p .
,

.“ .,.

. The error in this,derivation lies in the false analogy
between the.streight wing in yaw, and the s-wept-backwing-.
If a straight wing is put in S-EW, both the normal “and
tangential components are decreQsed by’ cos @ so that ~
the lift takes on a f&ctor of cos’2@. But if a straight
wing is given sweepback, only the effective t~gential
component Is ~han~ed by Cos q while the normal co~iponent
remains unchmged, ..SQ that the ltft 1s only to be
multi.pli.edby Casq ● If nbw the swept-back wing is
yawed, the norr.~1 cogqpnents on both wing-halves change
by c’os~x .1 ti.ndthe.tangenkZal campo.nents take on the
f&c*or5 COS((P- p). and COS(Q + (3). Accordingly the
ccmmct rollingmamen.t .d.ueto.si.deslip is .

. . .. .. . -

COS(9+ pi] = f SinV;SinpL=~l_co:(,y-~}- . . . ,, ,. (39) .,
.“

. ,.

.“
.. . .. . . , -.. e. “.

while the old formula ~iveq twice this amount. *acing “-;
do::nth~s error in the lite~ature is fux-thercomplicated
by the cfrcunstmce that the rolling moment is not always

dimensionless with ~ as in this repcu%, but with Fb
instead.

made
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So for instance, in the much used summary by Schlichting (13)
there is a formula for CL for small ~ and p which
is formally the same result as in equation ()~0), Wevgr-
theless the Schlichting formula contains the above error
slnce Fb’ was used ii~nondimensionalizing.

The only work known to me which avoid the above
fallacy is Multhopp~s paper (10), but since the error,
even ‘here, is not expressly emphasized, and rolling moment
due to sideslip is only given in the farm of an integral
to be qvaluatsd in every individual case over a lift
distrib~tiOn whi~h has tO be ~alculatad for this ~ase, the
Multhopp results have been less noticed tb~ansome others.
In add~tion, Multhopp Is concerned with the oblique
position of the free vortex sheet, which causes an
additional angle of attack distribution Aa * ai~ ta.nq
where cc

4
is the induced angle of attack distribution ‘

for nono lique flow incidence; the positive sign is to
be ts&en for the advancing wing$ and the negative for the
retarded wing. While now, acccrding to Multhopp, the
lift distribution belon~ing to &a must be calculated,
and fromit the corresponding r~lllng moment “dtieto side-
slip, one may by & somewhat cruder procedure obtain also
in this case a closed formula.

To this end we assume the lift distribution of the
wing withaut yaw to be approximately ell.iptic&l. Then
at is constant along the span, and equal to

{ c
~ likewise the absolute value of &a Is constant alongTfA
the whole span; but the sign changes at the center from
plus to minus. The lift distribution corresponding to a
discontinuous distribution of a like this, is, for a
wing half, appr~ximately like the usual lift iiistributioti
of a wing of half the span. mat is, the total lift
coefficient associated with the Aa of a wing half, if’
we use the elliptical conversion fOr.mula, and c~am = 2Tf
is given by

.
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From this we get for the coe.ff’loi.entof the corresponding
rolling moment:.

Together &th the mome& ‘(LO)of the bound vortice~, this
gi;es for-the total rolltng iomen$ due to yaw resulting
from sweepback the convenient formula

.:.

.,..

., -
,,

:., ,.

v, mi!’MARY ‘ .

Tw,q,methods have bsen developed for c~lcu~ating .
the lift “-di,s’tyibutlofi’over the Span$ which takes “into
accouht tlie-influence of the distributim of the
circulation-over an area better than thb Prandtl lit’ting-
line theory, and which may b~th be used on wings with
sweepbacka For swept-hack wings, the first mthod,
called the F-metin”od,is numerically very labortous, and
therefore, serves only as a check Or the ,simpler
L-method- The check ts very good, even at large sweep “
angles. The camputa~tona for a straight wfng require
about 3 hmrs,, for the swept-back wings about 8 hours.
A series of exenples was calcul~ted numerically~ from
which the following corlclusions ma~ be drawn:

1. For the straight uing the new method gives a
noticeable decrease af C?a when campared with the

Prandtl method, wh~ch for example at L = ~ amounts
to about % percent. It the profile is very thin, the
experimental values seem.to lie very well an the new
c la curve, According to this, the difference between

the old lifting-line theory and experiment, in the case
of very thin protiies, is not to be attributed to a

,

decrease of the tiieoretical eta= = 2R because sf

boundary layer, but comes from negkcting the twoq
dimensional distribution of th6 c3rculatiqn,*-.,. : .’
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$ta F
2. ~n figure k theratio — of the new C!a

c?a P
to the old is plotted versus the aspect ratio A . Since
the curve is pretty flat in the interval of normal aspect ‘

* r~tios, the conversion formulas for changing from one
aspect ratio to another are not essentially changed. me
curve may, however, be used for correcting the rolling
moments caused by antisymmetrical angle of attack
distributions. For this purpose, one ‘wouldhave to
multiply the moment calculated by the old theory by the

Cf aF
value Qf — scaled off of-the curve at the point ~ ,

c1aP ,,

~us for example one would get for the rolling moment due
to sideslip resulting from dihedral a decrease of
15 percent while measurement &ives 18 percent. This is
for a rectangular wing withaspect ratio of b.

3. For swept-back wings a comparison of the L-method
with the method of Multhopp ‘(10)was carried out. The
L-method gives a greater decrease of C!a and a smaller
displacement of the neutral point c~used by sweepback
than the Multhopp method; moreover, it converges more
rapidly.

4..Availatle experiments show less change of c ‘a.
caused h~ s’weepbacktha~ predicted by the L-method, and
either no displacement at all or very small displacement
of the center of load in the spanwise direction. These
diffe&6nces between theory and experiment are presumably
to be explained by a move,ment of boundary-layer material
towsrd the wing tips, and this is verified by flow
observations . .

~. The formula customarily given for thq rolling
moment due to ‘sideslip of the bound vortices of a swept~
back wing rssts on a fallacy, md gives values which sre
100 percent too larg6,. In section IV a convenient
closed formula is derived for the rolling moment due to
yaw resulting from sweepbeck, iri which formula the
influence of the free vortices is also taken into account,

...,,

Translatich by H. R, G?n.umnann
McDonnell Aircraft Corporation
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StTPPLEMENT

In comparing my evaluation of the VDT measurement
with the Rulthopp evaluation ((10) fig. 3) I could not
find the point corresponding to the wing 2.&l~.O.
Writing to Nr. Multhopp about this, I was informsd that
he had omitted this point because he tlidnot think it was
correct. At the ss-metime he sent me the ac~ompanying
amplified diagrnm in which there is, in ad3ition, a new
point 1.

This figure seems at first to verify the correctness
of the Wulthopp calcl~lation, this also if one only
considers the j.nclinat~on of the theoretical straight
line. In my report only wings -5and 7 were used, because
these were the only ones for which nothing was changed
but the angle of sweepback in starting from q = OO;
for all ether wings the profile and the twist were changed
at the same ttme, for no. 1 even the plan forriwas
change d, The thesis that swe6pback causes no essential
displacement of center of lift is thus ccnfirm.ed by the
only comparable measurements 5 an~ 7 (and ‘byBlenk (3)).
Against this conclusion rlaybe adduced the ot’n6r ~Leasur8.
I’mnt s as weil as the fact that by extrapolation to
v 06 one obtatns centers of lift located very far out.
(~.e allusion in ~ report to tip eff6c!tmay not be
sufficient as an explanation as Yulthgpp correctly
remarks.) Finally, if one considers that the calculation
of a from rLeasnr6m6nts of cm rests on the assumption

that the neutral points of the individual profile sections
are not changed by sweepb~c’k, one must probably say in
aonclusi.on that a final ansvmr to the question cannot
yet be given on the basis of the experimental results
available at the present times
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NACA TM NO, 1120 Fig. 1

a)

Ix

‘m ~

[1111

Figure 1. The vortex system or the lifting surface

(a) Straight-rectangular wing

Y

.

,

(b) Swept-back rectangular wing
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NACA TM No. 1120 Fig. 3

.

,—— — Prandtl’s theory of the .B , , n m

I
o

I
Q5

,ne

-Figure 3. Lift distribution of the 3 rectangular wings = 1, 5, 10,
Comparison of Prandtl’s theory of the supporting line with the
lifting surface method.
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e (Helmbold)

o 24 t5~870

ca~ c~F
Figure 4. The relation — = — for rectangular wings of the

cap cap

ratios O +10 [cap z lift coefficient according to the ~-method,

Ca = lift coefficient according to Prandtl’s theory of the
P

supporting line with C
%

= 2m* 2’
z
p
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NACA TM No. 1120 Figs. 5,6

Fi

.

,

.

a

Q*
b

L/z

r

gure 5. The “lift distribution G (~) of the 45° re

swept-back wing A= 5 as the sum of 2 distriburi

and C (~)~2 (F-method).

ctangu

ons G

lar

(Y)

F-method

L-method

L-method

(m =

(m =

I
w Y ;0.

Figure 6. Lift distributions of the rectangular wingA’ 5 with
the sweep-back angles ~ = 0°, 15° and 45° according to the
lifting surface and supporting line method.
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15)



Fig. 7 ●
NACA TM No. 1120

, Supporting line in 1/4 T

a)
‘r

‘Point in 3/4 T

6)

Supporting line

‘Point in 3/4 T
.

-.

Figure 7. The vortex model of the L-method

(a) Wing withbut sweep back

in 1/4 T

(b) Swept-back wing
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Figs. 9,1O NACA TM No. 1120 ,

-

Q2

@f’
Figure 9. Lift distributions of the rectangular wingA= 5 with

the swept-back angles y = 0°, 15°, 30° and 45°, according to
the L-method, Dashed line; result of Multhopp’s method for
(K = l,rn= 7) for~’ 0° and 45°.

7. h=7

Figure 10. Lift distributions of the trapezoidal wings,A- = 5j
Z = 2 with the swept-back angles # = 0°, 15°, 30° and 45°,
according to the L-method. Dashed line; result of Multhopp’s
method for ; (K = 1, m = 7) for @ = 0° and 45°.

,

I



NACA

Q6 -

G@)

04-

Q2 –
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Figs. 11,12

-t

Figure 11. The converging of MulthOpp’s method for the rectangular “
wing; A= 5,&= 450.

.

●

i16 –

Q4-

Q2 -

Figure 12. The converging of Multhopp’s
wing;YL= 5, Z =

Zo
method for the trapezoidal
2,9= 45°.



Fig. 13 NACA TM No. 1120 w
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